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Abstract. This paper deals with the determination of the tracer (DT ) and chemical (Dch) surface
diffusion coefficients in the presence of a gradient of the coverage �. The lattice gas model and
quasi-chemical approximation are taken as accepted in the theory. The results are discussed with
respect to the interaction energy of particles, which influences the equilibrium energy of atoms as
well as the saddle-point energy. Such interactions break the symmetry of jumps in the systems
with gradient grad�. This model predicts a decrease of DT with the square of the gradient of the
coverage�. Dch depends on the coefficient of proportionality of the difference between the mean
jump rate in the direction of grad� and that in the opposite direction. It has been found that, in
the case of repulsive interaction, the coverage dependencies of DT and Dch have local maxima,
whose positions depend on the rates of change of the saddle-point energy and of the equilibrium
energy of the atoms due to the interaction. For attractive interaction, DT either decreases with �
or increases depending on the saddle-point energy changes. At low temperatures our results differ
substantially from those of the calculations made within dynamical mean-field theory.

1. Introduction

In recent years, surface diffusion has been intensively studied from many viewpoints. The
dynamics of adsorbates on solid surfaces plays a fundamental role in many physical and
chemical processes such as adsorption, melting, crystal and film growth, catalysis, and
corrosion (see e.g. [1–3]). From the theoretical point of view the dynamics of adsorbed
atoms in non-equilibrium conditions has been intensively studied, especially for systems in
which ordered phases are formed [4–7]. In such systems, experimentally determined diffusion
coefficients usually show local extrema (maxima or minima), which are explained by the
presence of an ordered phase [8, 9]. The diffusion processes were simulated by Monte Carlo
calculations [4, 5] or by methods based on the master equation [6, 7]. The Green–Kubo formula
is usually used in the interpretation of such results. It fits within the framework of linear
response theory and determinesDch as a time correlation of density fluctuations in the system
in equilibrium multiplied by the thermodynamic factor. The standard approximation for further
calculations of the chemical diffusion coefficient is the dynamical mean-field (DMF) theory,
which neglects memory effects. Within the framework of this approximation, we encounter
problems in the determination of the chemical diffusion coefficient in the vicinity of the phase
boundaries. In [10] the roles of memory effects on tracer and chemical diffusion coefficients
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were studied by means of Monte Carlo simulations for complex systems. It was shown that in
strongly interacting cases with order present, the memory effects play an important role and
influence the effective energy barrier for diffusion considerably. In this case, Monte Carlo
simulation results differ substantially from DMF theory results.

The phase transformations are consequences of the interaction of the atoms on the surface,
and thus the distribution of atoms plays a decisive role in the formation and relaxation of the
system into the equilibrium state. In conditions in which the system is far from equilibrium and
for strongly interacting particles, the gradient of the coverage (grad�) breaks the symmetry
of the jumps of adsorbed atoms, and atoms move preferentially in the direction of this gradient
or in the opposite direction, depending on the interaction. This dynamics cannot be respected
in standard DMF theory. To achieve better insight into the mechanism of diffusion, we used
another method for analytical determination of the diffusion coefficient in non-equilibrium
conditions. Within the framework of the lattice gas model for diffusion, we determine the
tracer (DT ) and chemical (Dch) surface diffusion coefficients. In our model, the interaction
influences the equilibrium energy of adsorbed atoms as well as the saddle-point energy, to
an extent depending on the occupation of positions adjacent to the initial or final positions of
the jumping atom. This model of interaction enables us to incorporate the breaking of jump
symmetry in our calculations for systems with a gradient of coverage. A similar model was
used in previous papers describing surface diffusion within the framework of Monte Carlo
simulations or the Green–Kubo formula; see e.g. [7]. The equilibrium properties of the system
will be described within the quasi-chemical approach, which has the advantage of giving simple
analytical results in closed form and which is correct far from phase transformations.

Towards the end of this paper, our results are compared with the Green–Kubo formula
within the DMF approximation (with the same microscopic model and approximations). The
differences between the DMF theory and our model are more substantial at lower temperatures.
We shall discuss possible sources of this difference and the role of the coverage gradient in the
dynamics of adatoms.

2. Model of the dynamics of adsorbed particles

Since we are investigating the basic features of the dynamics of adsorbed atoms in non-
equilibrium conditions, we select a simple model which enables us to give a clear interpretation
of our results. The model of the surface symmetry and possible jumps of adsorbed atoms
that we use is displayed in figure 1. The surface is represented by a square lattice with the
lattice constant a. We suppose jumps to occur only into the nearest-neighbour positions. The
interaction of atoms is restricted to the nearest-neighbour sites. The dynamics of atoms on
surfaces will be described in terms of the dependence of the probabilities per unit time of
jumps of individual atoms on the environment. The probability of a single-atom jump, where
the nearest positions are empty, is supposed to be of Arrhenius form:

W0 = ν exp

(
− E0

kBT

)
(1)

where ν is a frequency factor, E0 the basic value of the activation energy of diffusion, kB the
Boltzmann factor, and T the temperature. Furthermore, we introduce the changes of the energy
barrier to diffusion that arise as a result of the interaction of adatoms. The total change of the
energy barrier is constituted of two contributions. The first part results from the change of the
equilibrium energy of the particle due to the interaction with atoms in adjacent positions. The
energy barrier is changed by δE if an adjacent site is occupied and this change is additive; this
means that if two adjacent sites are occupied, the energy barrier is changed by 2 δE. So for
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(a)

(b)

Figure 1. (a) The definition of the adsorption positions on the surface of square symmetry, together
with the definition of the basic parameters of the lattice. The jump rates are indicated; these depend
on the occupation of adjacent sites. (b) The energy diagram of the adatoms and the energy barrier
to diffusion.

the particular configuration, the energy barrier to diffusion, E, is

E(i) = E0 − i δE (2)

if i adjacent sites of site A are occupied. δE > 0 for the repulsive interaction.
We introduce the parameter v0 describing the interaction:

v0 = exp

(
δE

kBT

)
. (3)

Beside these changes of the energy barrier, for diffusion the effect of the lateral interaction at
the saddle-point position is taken into account. This additional influence of atomic interaction
considerably intensifies the breaking of the symmetry of the jumps in inhomogeneous systems.
Such models were studied also in [5, 7] where the importance of this type of interaction for
the dynamics of adatoms was demonstrated. It can accelerate or retard the diffusion. In our
microscopic model the additive change of the saddle-point energy is an increase by k �E,
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Figure 2. The microscopic model of the probability of jumps in a particular configuration, showing
all adjacent sites which influence the dynamics of the adatom.

where k represents the number of atoms which influence the energy barrier at a saddle point.
We assume that particles at positions 2, 3, 9, 10 (figure 2) as well as those at positions 5, 7
make the same contribution to the energy of the saddle point (between 0 and 6). In [7] it was
assumed that only the atoms at 2, 3, 9, and 10 make contributions. In our model we include
also the contributions of atoms at positions 5 and 7, even though their distance from the above-
mentioned saddle point is larger and thus their influence is weaker. We neglect this difference,
since we would like to emphasize the significance of the gradient of the coverage and thus the
difference in occupation probability between positions 5 and 7. Within this approximation,
the total energy barrier E has the form

E = E0 − i δE + (i + j)�E = E0 − i(δE −�E) + j �E. (4)

i is the number of atoms at positions adjacent to the initial position and j is the number of
atoms at positions adjacent to the final position of the jumping atom. The resulting change
of the energy barrier can be interpreted as the change due to the occupation of sites adjacent
to the initial position (the change of energy is characterized by δE′ = δE −�E) and due to
the occupation of the sites adjacent to the final position (with the change of energy �E). To
describe this feature of adatom dynamics, we introduce two parameters:

v1 = exp

(
− δE′

kBT

)
(5)

v2 = exp

(
−�E
kBT

)
. (6)

�E > 0 for the repulsive interaction; v0 = v1/v2. We shall study the dynamics of the system
above the temperature of the phase transition. In a square lattice with a repulsive interaction, the
highest temperature of the order–disorder phase transition occurs at� = 0.5 and corresponds
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to δE = 1.76 kBT ; this means that v0 = 5.81 (see e.g. [7]). For example, for δE = 0.1 eV,
the phase transition temperature is T = 660 K. In our model, we accept values of v0 � 5.81.
The probability per unit time of a jump of the adatom from position i to position j , Pi→j , is
given in this model by the relation

Pi→j = W0v
k
1v
l
2(1 − pj ) (7)

where pj is the occupation number for the j th position and it is pj = 1 if the j th position
is occupied and pj = 0 if it is empty. The mean value of pj is equal to the mean coverage
�(j) at position j , which is the relative occupancy of adsorption sites. Relation (7) reflects
the dependence of the jump probability on the environment of the jumping atom:

k =
NNi∑
n

pn (8)

l =
NNj∑
m �=i

pm. (9)

‘NNi’ indicates that the summation is over the positions that are nearest neighbours of i. The
probability of a jump can be rewritten in the more useful form

Pi→j = W0(1 − pj )
NNi∏
k �=j
(1 + pk(v1 − 1))

NNj∏
l �=i
(1 + pl(v2 − 1)). (10)

The diffusion process is a stochastic process. We determine the ensemble mean value of
the probability of jumps. This value—〈Pij 〉—is given by

〈Pij 〉 = 1

�
〈piPi→j 〉 = W0

�

〈
pi(1 − pj )

NNi∏
k �=j
(1 + pk(v1 − 1))

NNj∏
k �=i
(1 + pl(v2 − 1))

〉
. (11)

Relation (11) gives the correlation function for the simultaneous occupation of clusters of one to
eight sites. We express the correlation function for occupation of positions in larger clusters in
terms of the two-point correlation function and the average occupation of individual positions
by employing the cumulant expansion method [11]. Assuming a Gaussian distribution of the
different configurations of adatoms on the surface is the main approximation of this method.
In this case the cumulants of third and higher orders are equal to zero and we can express
each three-point correlation function as a combination of a two-point correlation function and
�. Similarly, each four-point correlation function can be expressed as a combination of a
three-point and a two-point correlation function and �, and so on.

We start our analysis from the equilibrium state of the system. As regards the extension of
our model to non-equilibrium systems, we use for equilibrium a simple approximation—the
quasi-chemical approximation. This determines the distribution only for clusters with two
adjacent sites, but in an analytical form. More exact methods which are suitable especially for
use near the phase transformations are published in for example [7] (e.g. the cluster variation
method). We denote the equilibrium ensemble mean values of the jump rates, taken over all
possible configurations of atoms, as 〈Pij 〉0. Since the probability of a jump depends on the
occupation of the nearest-neighbour sites, we introduce n0 as the equilibrium mean value of
the density of occupied pairs of adjacent sites.

3. Equilibrium conditions

We describe the equilibrium configuration of the atoms, characterized by grad� = 0, within
the framework of the quasi-chemical approximation [12]. We consider the three possible
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different configurations of adjacent sites as independent clusters and denote them by the symbol
(i, j), where both i and j can be either 0 (empty) or 1 (occupied). We will thus represent the
clusters by (0, 0), (1, 0), (1, 1). The relative concentrations of these pairs in equilibrium will
be denoted by cij . This means that n0 = c11. The ci,j have to obey the balance equations and
the quasi-chemical equilibrium condition:

c2
10 = c00n0v

2
0 . (12)

The solution of (12) under the condition of constant number of atoms has for n0 the form

n0 = 2�(v2
0 − 1)− v2

0 +
√
Sn

2(v2
0 − 1)

(13)

Sn = [v2
0 + 2�(1 − v2

0)]
2 + 4�2(v2

0 − 1). (14)

For completely disordered systems, n0 = �2.
If we input these relations in (11), we obtain the equilibrium mean value of the probability

of jumps. The particular configuration of atoms and the cluster which includes all of the atoms
influencing one jump (e.g. from position 0 to 6) is shown in figure 2. The numbering of the
positions is retained in the next equation and, indeed, throughout the whole paper:

〈P06〉0 = W0

�

〈
p0(1 − p6)[(1 + p2(v1 − 1))(1 + p5(v1 − 1))(1 + p9(v1 − 1))]

× [(1 + p3(v2 − 1))(1 + p7(v2 − 1))(1 + p10(v2 − 1))]
〉

= W0

(
1 − n0

�

)
(1 + (v2 − 1)�)3

(
1 + (v1 − 1)

n0

�

)3

. (15)

The higher-order correlation functions in (15) were expressed in terms of n0 and � by
employing the cumulant expansion method [11]. At this point we suppose a Gaussian
distribution of the configuration of atoms on the surface. In the case of no interaction
(v0 = v1 = v2 = 1), the result is 〈P06〉0 = (1 −�). In equilibrium conditions, we obtain the
same formula for jumps from 6 to 0; this means that in this case the detailed-balance condition
is fulfilled.

4. Non-equilibrium systems characterized by grad Θ

The non-equilibrium state of the system of adatoms will be characterized by grad�. We shall
suppose grad� to be constant over time. Furthermore, we restrict our calculations to terms
which are linear in grad� and we neglect higher derivatives of �(x). This means that we
suppose deviations from the equilibrium distribution of adatoms to be small. We focus on
the study of one-dimensional diffusion in the direction of grad�, which we suppose to be in
direction (06)—see figure 2. In order to proceed with the determination of the mean value of
the jump probability, we introduce some simplifications. Firstly, we assume local equilibrium
in the lines of atoms perpendicular to the gradient of the coverage. For these lines we introduce
a mean value of the coverage, which is a function of lattice site i—namely�(i)—but changes
only in the direction of grad�. So the coverage is a function of the space coordinate:

grad� = �′ = �(6)−�(0)
a

(16)

�(2) = �(9) = �(0) (17)

�(8) = �(5) = �(1) = �(0)− a�′ (18)

etc. To evaluate the mean value of the probability of a jump from position 0 to position
6 we determine the mean value for fully occupied pairs of adjacent sites in non-equilibrium
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conditions. As an extension of the pair correlation function in equilibrium conditionsn0(�), we
define a function n(�1,�2) denoting the correlation function for the simultaneous occupation
of a randomly chosen pair in a system with a gradient grad�. This means that the pair is
formed by atoms in adjacent positions which can belong to different lines with different values
of the coverage�. The correlation function thus depends on both values of the coverage. This
function was determined in [13]. In fact, we do not know the form of n as a function of the
two independent variables, but it is considered at �1 = �2 = � (where adjacent atoms are
in positions which have the same coverage) to be equal to n0(�) (n(�,�) = n0(�)). Since
�1 = �2 ± a grad�, we have

d�1

d�
= d�2

d�
= 1.

We can deduce
dn(�1,�2)

d�
= ∂n(�1,�2)

∂�1

d�1

d�
+
∂n(�1,�2)

∂�2

d�2

d�
= ∂n(�1,�2)

∂�1
+
∂n(�1,�2)

∂�2
. (19)

At the point �2 = �1, we have

dn(�1,�1)

d�
= 2

∂n(�1,�1)

∂�1
= dn0(�)

d�
. (20)

If we now evaluate the mean value of the probabilities of jumps per unit time, we obtain

〈P06〉 = 〈P06〉0[1 + a�′B] (21)

B = 4(v2 − 1)

1 + (v2 − 1)�
− v1(1 + (v2

0 − 1)n0/�)√
Sn(1 − n0/�)(1 + (v1 − 1)n0/�)

. (22)

For the repulsive interaction, we have v0 > 1, v2 < 1, and thus B < 0. The preferred
jumps are in the opposite direction to grad�. For attractive interaction, B can be positive, and
in this case atoms move mostly in the direction of the coverage gradient. It is also possible that
B = 0 for v1 < 1; this means that the attractive interaction of atoms is compensated for by the
tendency of increase of the entropy of the system, and the dynamics of the atoms is similar to
that in the equilibrium state. In the case where v0 = v2 = 1, we have n0 = �2, and we obtain

B = − 1

1 −� (23)

and 〈P06〉 = (1 −�)− a�′. In this case the change of the jump probability with the gradient
of the coverage does not depend on �. For the jumps in the opposite direction (see figure 2)
we obtain

〈P05〉 = 〈P06〉0[1 − a�′B]. (24)

To simplify the notation, we introduce for the jumps in the direction of grad� the probability
P̄+, for those in the opposite direction P̄−, and for the equilibrium mean value P̄0 = 〈P06〉0. I
should like to emphasize that the gradient of the coverage breaks the symmetry of the jumps
and that the difference between P̄+ and P̄− is proportional to the value of this gradient. The
coefficient B is a measure of this proportionality.

5. Tracer diffusion coefficient DT

To determine the tracer diffusion coefficient, we accept the definition based on the mean square
displacement of the individual atoms [14, 15]. Since we shall study one-dimensional diffusion,
the diffusion coefficient, DT , is scalar. In our model, DT depends on the number of atoms on
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the surface N (and thus on coverage �) as well as on the interaction of the adatoms and the
temperature, i.e. on coefficients v1, v2:

DT (�, v1, v2) = lim
t→∞

1

4Nt

N∑
i=1

〈(�Ri)2〉 (25)

where t is time and �Ri is displacement of the ith atom from a defined position during time
interval t . We suppose the motion of the atom on the surface to be a random walk with the
probabilities P̄+ of jumps in the direction of grad� and P̄− of jumps in the opposite direction.
The mean number of jumps per long time interval t is M(t) = t P̄0. The probability Pn(m)
that at time t the observed atom is at the position R(t) = R(0) + a(m− (n−m)) is given by
the binomial distribution:

Pn(m) =
(
n

m

)
(W+)

m(1 −W+)
n−m (26)

where

W+ = P̄+

2P̄0
(27)

W− = P̄−
2P̄0

(28)

giving

W+ +W− = 1. (29)

m is the number of jumps in the direction of grad�; n = M(t) is the mean total number of
jumps during time t . The following relations are valid for the binomial distribution:

〈m〉 = nW+ (30)

〈(m− 〈m〉)2〉 = nW+W− (31)

〈(R(t)− R(0))2〉 = a2[〈4m2〉 − 4n〈m〉 + n2] = a2n[4W+W− + n(2W+ − 1)2]. (32)

If we determine the mean square displacement from the mean position of the atom at the actual
time t :

〈(R(t)− 〈R(t)〉)2〉 = a2M(t)[1 − (aB�′)2] (33)

we obtain for the tracer diffusion coefficient

DT = a2

4
P̄0(1 − (aB grad�)2). (34)

This value does not depend on time. It is evident that the tracer diffusion coefficient is
proportional to the square of grad� in non-equilibrium systems. The coefficient of this
proportionality is −(a2P̄0/4)(aB)2. Such a dependence is to be expected, since this kinetic
coefficient cannot depend on the direction of the gradient of the coverage. The interesting
feature of the result is that the tracer diffusion coefficient always decreases with increase of
the coverage gradient. The particular dependencies of DT on the model parameters will be
discussed later.

6. Chemical diffusion coefficient Dch

We start our analysis of the chemical diffusion coefficient Dch from the general equation
describing the time evolution of the probability distribution of the atoms on the surface,
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namely P(. . . , pi, . . . , t):

∂tP (. . . , pi, . . . , t) =
∑
i

NN∑
j

[Pj→i (pj + 1)P (. . . , pi − 1, pj + 1, . . . , t)

− piPi→jP (. . . , pi, pj , . . . , t)]. (35)

pi is the occupation number of the ith position at time t ; the symbol NN means that the sum
is over the positions that are nearest neighbours of the i-position. Pi→j represents the discrete
jump given by equation (10). To rewrite equation (35) as a continuous diffusion equation,
we use the method described in [11]. First, we introduce continuous variables. We will
move a window with a small area V over the whole surface. Each position of the window is
characterized by the position vector �r of its centre of mass and by the number of atoms x that
lie within its area at time t . We introduce the continuous function �(�r, t):

x(t) = V�(�r, t). (36)

If �r coincides with the lattice site i (�r = �ri), then�(�ri, t) = �(i)(t) and x = xi = V�(i)(t).
The product xiPi→j represents the flux of atoms from the area surrounding the position i
to the area surrounding position j . The flux depends on the volume of this area and on the
probability of jumps per unit time Pi→j . Since we can arbitrarily extend the volume in the
direction perpendicular to grad� (in this direction, we suppose equilibrium conditions), the
number of atoms xi could be large even for a small dimension in the direction of grad�. The
following procedure proceeds within the framework of the Kramers–Moyala expansion. In
the limit xiPi→j → ∞, we restrict consideration to terms up to second order in the expansion
in 1/(xiPi→j ) of equation (35). This procedure results in the approximate equation

∂tP (x, t) =
∑
l

∂l(Al(x)P (x, t)) +
1

2

∑
l,k

∂l ∂k(Blk(x)P (x, t)) (37)

where

Al(x) = −
∑
j

Djlxj (38)

Blk = dlk
∑
j

(Djlxl +Djlxj )−Dlkxl −Dklxk (39)

Djl = Pj→l − djl
∑
k

Pl→k. (40)

djl is standing for the Kronecker delta. This approximation means that in the case of a very
high number of jumps per unit of time, the solution of equation (37) is identical to the solution
of (35) in the limit xiPi→j → ∞.

The matrix with elements Di,j , determined by discrete jumps, is in our model a function
of the position vector �r and the jump distance �δ:

Dij → D(�ri, �rj − �ri) = D(�r, �δ). (41)

For various restrictions which we impose on the system, the function D(�r, �δ) fulfils the
following conditions:

(1) The system is in equilibrium, � is constant:

∑
j

Dji = 0 →
∫
(d�δ) D(�r + �δ,−�δ) = 0. (42)
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(2) The number of particles on the surface is constant:

d

dt

∑
i

pi = 0 →
∫
(d�δ) D(�r, �δ) = 0. (43)

(3) The detailed balance in equilibrium conditions (this condition is not used in the non-
equilibrium model):

Dij = Dji → D(�r + �δ,−�δ) = D(�r, �δ). (44)

The function D(�r, �δ) represents the distribution function of the length of jumps �δ. The
following treatment needs the introduction of the momenta of this distribution function:

�M(�r) =
∫
(d�δ) �δD(�r, �δ) (45)

D̂(�r) = 1

2

∫
(d�δ) �δ �δD(�r, �δ). (46)

At this step we introduce a second approximation: we neglect the higher moments ofD(�r, �δ).
This approximation corresponds to the neglecting the terms proportional to the third and higher
powers of the lattice constant a. Within this model we evaluate the coefficients A and B in
equations (38)–(40) (see [11]):

A(�r,�(�r)) = −
∫
(d�δ) D(�r + �δ,−�δ)�(�r + �δ) = �∇( �M(�r)�(�r))− �∇ �∇(D̂(�r)�(�r)) (47)

B(�r, �r ′) = 2 �∇′ �∇ : [D̂(�r)�(�r)δ(�r − �r ′)]. (48)

We derive the deterministic equation for the time evolution of the mean value of the coverage,
which is determined from

�̄(�r, t) =
∫

d� �(�r, t)P (�(�r, t)) (49)

where P(�(�r, t)) is the solution of equation (37) in which we have substituted �(�r, t) for x
using definition (36). Finally, we obtain a diffusion equation in the form

∂t �̄(�r, t) = �∇(D̂ �∇�̄)− �∇[( �M − �∇D̂)�̄]. (50)

Within the framework of our microscopic model we can easily evaluate the moments �M and D̂:

�M(�r) = a[P̄+ − P̄−] = 2aP̄0aB�
′ (51)

D̂(�r) = a2P̄0 (52)

�∇D̂ = a2 ∂P̄0

∂�
�′ (53)

where

∂P̄0

∂�
= W0

(
1 + (v1 − 1)

n0

�

)2

(1 + (v2 − 1)�)2
{

3

(
1 − n0

�

)

×
[
(1 + (v2 − 1)�)

v1 − 1

�

(
∂n0

∂�
− n0

�

)
+

(
1 + (v1 − 1)

n0

�

)
(v2 − 1)

]

− 1

�

(
1 + (v1 − 1)

n0

�

)
(1 + (v2 − 1)�)

(
∂n0

∂�
− n0

�

)}
(54)

∂n0

∂�
= 2�√

Sn

(
1 + (v2

0 − 1)
n0

�

)
. (55)
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The final expression of equation (52) has the form of the second Fick law:

∂�̄t = �∇[(D −D1) �∇�̄] (56)

where

D = a2P̄0 (57)

D1 = a2

(
2BP̄0 − ∂P̄0

∂�

)
�. (58)

The difference D −D1 plays the role of a chemical diffusion coefficient:

Dch = D −D1 = a2W0 ∗Da (59)

where

Da = P̄0

W0
[1 − α�] (60)

α = 2B − ∂ ln P̄0

∂�
. (61)

The role of the interaction in the non-equilibrium system is characterized by the function
α(�, v1, v2). For repulsive interaction and weak attraction, the interaction is α < 0 and thus
Dch > 0.

In the case of non-interacting atoms, this means that if v0 = v2 = 1, then

α = − 1

1 −� = B

and Da = 1, and we obtain a simple expression for the diffusion equation with the constant
diffusion coefficient in the usual form:

∂t �̄ = a2W0��̄. (62)

The derivation of Dch has been carried out for the presence of a gradient grad� �= 0. In the
next section we compare our results with the Green–Kubo formula in the DMF approximation,
which gives the chemical diffusion coefficient within the framework of linear response theory,
i.e. for the system near to equilibrium.

7. Coverage dependencies of the tracer (DT ) and chemical (Dch) diffusion coefficients

In this paper we have answered the question of how the presence of a gradient of the coverage
in a system of interacting adatoms influences the kinetic coefficients—namely, the tracer and
the chemical surface diffusion coefficients. In such systems the symmetry of the probability
of jumps of atoms is broken and, depending on the kind of interaction, atoms preferentially
move in the direction of grad� or in the opposite direction. We respect this feature of non-
equilibrium systems in our microscopic model. To emphasize this feature of the dynamics, we
suppose that not only the equilibrium energies of adatoms, but also the saddle-point energies
are influenced by the interaction. Such dependencies of jump probabilities on the environment
are described by the factors v1 and v2, and we studied the influence of these parameters on the
coverage dependence of bothDT andDch. Representative results are presented in figures 3–5.

All calculations were carried out for small values of �′ and high temperatures, above the
critical temperature Tc of the phase transition: T > Tc. Thus we excluded the possibility of
ordered phase formation. In such a temperature region the quasi-chemical approximation is
acceptable. The case of T < Tc, which is more interesting, will be discussed in future papers.
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Figure 3. The dependence of the tracer diffusion coefficient DT on the coverage � for different
values of the repulsive interaction energies changing the saddle-point energy: v0 = 3; v2 = 1
(curve 1); v2 = 0.8 (curve 2). grad� = 0: the system is in equilibrium.

Figure 4. The dependence of the tracer diffusion coefficientDT on the coverage� and its gradient
in the case of repulsive interaction. v0 = 3, v2 = 0.8; grad� = 0 (curve 1); grad� = 0.05
(curve 2).

The influence of the parameter v1 (v2 = 1) on the coverage dependence of bothDT andDch
corresponds to the results published in [4–7]. For the tracer diffusion coefficient for repulsive
interaction, the coefficient v2 substantially decreases the value of DT , without changing the
qualitative dependence of DT on �. For this kind of interaction, DT (�) shows a maximum
above � = 0.5. On the other hand, in the case of attractive interaction, DT increases with v2.
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(a)

(b)

Figure 5. (a) The dependence of the chemical diffusion coefficient Dch on the coverage � for
different values of the repulsive interaction changing the saddle-point energy: v1 = 1.15; v2 = 0.7
(curve 1); v2 = 0.8 (curve 2); v2 = 0.95 (curve 3). (b) The dependence of the chemical diffusion
coefficient Dch on the coverage � for different values of the attractive interaction changing the
saddle-point energy: v1 = 0.5; v2 = 1 (curve 1); v2 = 3 (curve 2).

This is to be expected, since in the first case the presence of atoms on sites adjacent to the final
position of the jumping atom send the atom back to the initial position. In the case of attractive
interaction, these atoms attract the jumping atom to a new position and thus they enhance the
diffusion.
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The influence of v2 on Dch is qualitatively the same, but more complicated. In the case
of attractive interaction, the increase of the value v2 results in an increase of Dch for higher
coverages. In the case of repulsive interaction, Dch, as a function of �, shows a maximum,
whose position depends on v2. It is interesting that in the case of relatively small values of
v1 and v2, this maximum lies at � = 0.5 if v1 + v2 = 2. For higher values of this sum,
the maximum of Dch lies above � = 0.5, and for lower values, the maximum is below half-
coverage. Such results become intelligible if we expand the exponentials in (5) and (6) up to
linear terms only. In this case we have

v1 + v2 = 1 +
δE′

kBT
+ · · · + 1 − �E

kBT
+ · · · = 2 +

1

kBT
(δE′ −�E).

This means that the sum of v1 and v2 is equal to 2 if the decrease of the energy barrier to
diffusion due to the change of equilibrium energy of the atom is compensated by the increase
of the saddle-point energy, δE′ −�E = 0; thus δE = 2�E. The maximum of Dch is given
by the maximum of the thermodynamic factor at � = 0.5. If δE′ > �E, the effect of the
decrease of the energy barrier is dominant, and the maximum of Dch is observed at � > 0.5
(as was expected; see e.g. [13]). In the opposite case (δE′ < �E), the influence of interaction
at the saddle point is dominant, and the diffusion is suppressed at higher coverage. This is a
less realistic situation, but interesting from the theoretical point of view.

Now we return to the influence of grad�. As was stated above, the tracer diffusion coeff-
icient decreases proportionally to (grad�)2. This is demonstrated in figure 4. It is evident
that the gradient of the coverage does not change the character of the coverage dependence of
the tracer diffusion coefficient.

To estimate the influence of the deviation of the system from equilibrium on the dynamics
of adatoms, we compare our results with the chemical diffusion coefficient calculated from
the Green–Kubo formula within DMF theory (see appendix A) for the same model and
approximations. For weak interaction or for higher temperatures we obtain practically
identical results (see figure 6). The substantial deviations appear for strong interaction or
low temperatures. This discrepancy is discussed in the following section.

8. Discussion and conclusions

This paper deals with the analysis of the influence of the gradient grad� on the dynamic
properties of adsorbed atoms on a surface. In the presence of the gradient grad�, the jumps
of atoms depend on its direction. This feature of the dynamics was studied as it relates to
surface diffusion in [16], within the simple phenomenological model. It was shown that the
diffusion coefficient contains a contribution from the anisotropy. We see the primary value
of our model as lying in its paving the way for the determination of the diffusion coefficients
within the microscopic model. It gives improved insight into the mechanisms of diffusion and
the influence of interactions.

In our model we suppose grad� to be constant and the temperature to be above the
critical temperature of the phase transformation. An important feature is the specific influence
of the interactions of adsorbed atoms on their dynamics. The presence of a coverage gradient
breaks the symmetry of the adatoms jump and characterizes the deviation of the system from
equilibrium. It has been demonstrated that the tracer diffusion coefficient decreases with
(grad�)2 independently of the kind of interaction experienced by the atoms. This can be
interpreted as relating to the decrease of randomness in the dynamics of the adatoms with the
increase of the drift of the centre of mass that is determined. This is an interesting result,
which is in harmony with similar results from calculations of the long-range correlation of
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Figure 6. The ratio of the chemical diffusion coefficient determined from the Green–Kubo formula,
DKch, andDch determined from equation (59) for different values of the interaction energy: curve 1:
v1 = 1.3, v2 = 0.8; curve 2: v1 = 1.1, v2 = 0.7; curve 3: v1 = 1.1, v2 = 0.9.

fluctuations in non-equilibrium systems; see e.g. [17, 18]. This correlation is found to be
proportional to the square of the imposed gradient. Our results also impact on the analysis of
experimental data. We must be careful if we are determining DT from e.g. STM experiments
performed on non-equilibrium systems to circumvent the time dependence ofDT and take the
drift of the centre of mass into account.

Another situation arises in the case of the chemical diffusion coefficient Dch. This
coefficient is introduced in the linear non-equilibrium thermodynamics of the relaxation of
the system to equilibrium, and it represents the coefficient of proportionality of the mass fluxes
to the gradient of the chemical potential. So non-equilibrium conditions are automatically
supposed. But our model enables us to determine Dch within the microscopic model and
to avoid the difficulties which we meet in the linear response theory. Determinations of the
diffusion coefficient from the Green–Kubo formula usually neglect memory effects. This
approximation is known as the dynamical mean-field (DMF) theory. Monte Carlo simulations
of the diffusion [10] show considerable deviations in the diffusion coefficient from DMF
theory for strongly interacting systems at temperatures at which ordered phases form. The
memory effects can result in the increase of the effective energy barrier to diffusion near the
phase boundary. Since our method is in some senses more general than the DMF one (the
distribution of atoms is not homogeneous and detailed balance does not have to be observed),
we compare the methods within a similar model. The comparison of our chemical diffusion
coefficient with the one determined from the Green–Kubo formula in the DMF approximation
exposes deviations in the case of strong interactions. But these deviations can be caused not
only by the fact that the Green–Kubo formula is valid only near equilibrium, but also by the
process of calculation of DKch (see appendix A). As in [10], we observe a lower value of Dch
in comparison to the DMF approximation for lower temperatures near the coverage at which
ordered phases form. Within the DMF theory, the chemical diffusion coefficient is calculated
as a product of two terms. The first is the thermodynamic factor; the second represents the
mean number of jumps per unit time. In the case of strong interactions, when an ordered
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phase can form in the system, the thermodynamic factor reaches very high values while the
mean number of jumps per unit time is very low. To obtain reasonable values ofDKch, we have
to calculate both of these values very carefully. In the case of strong interactions, the DMF
approximation ceases be a good approximation for the description of collective diffusion in
non-equilibrium conditions. The comparison of Monte Carlo simulations with DMF theory
in [10] supports our results. Although both the Green–Kubo theory and our theory are linear,
they are used differently in practice. It is very difficult to calculate memory effects (such
as were introduced in [10]) using the Green–Kubo formula; our formalism does not need to
accept such approximations or to introduce the dependence of the diffusion coefficient on the
difference between the mean jump rate of atoms in the direction of grad� and that in the
opposite direction. This leads to the question of whether the differences between DMF and
Monte Carlo simulations, explained in [10] as memory effects, are results of real memory
effects or consequences of the presence of the coverage gradient in the system. This question
will be addressed in future papers.

It has also been shown that the parameter v2 plays an important role and must be taken
into account if we study interacting systems. v2 alone enhanced the breaking of the symmetry
of the jump probability and substantially contributed to the influence of interactions. We must
bear in mind that our theory is linear in grad�, and we will need to deal with the influence of
the second-order term and temperatures below the critical values for phase transitions.

As regards the maximum ofDch(�) for repulsive interactions, the analysis showed that the
dynamics of adatoms characterized by v2 can influence the coverage dependence ofDch more
than the equilibrium properties given by the thermodynamic factor (S(0)−1), which depends
only on the parameter v0.

Concluding our analysis, we can state that our results contribute to the understanding of
the complex dynamics of atoms on surfaces and to the interpretation of experiments which are
often performed on systems far from equilibrium or during the formation of ordered phases (see
e.g. [19]). Even though our method is linear, it is open to extension to non-linear approximations
and for studying systems far from equilibrium.
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Appendix

In this appendix we determine the chemical diffusion coefficientDKch within the framework of
the Green–Kubo formula [7, 20]:

DKch = π
1

S(0)
lim
ω→0

ω2

[
lim
q→0

1

q2
S(�q, ω)

]
(A.1)

where S(�q, ω) is the dynamic structure factor. The Green–Kubo formula determines the chem-
ical diffusion coefficient in a system near the equilibrium state. We calculated the dynamic
structure factor in the usual way. During the calculations, we neglect the memory matrix
and use the quasi-chemical approximation, as we do throughout this paper. So we obtain the
following results [7]:

S(�q, ω) = 1

π

S(�q)-(�q)
ω2 +-2(�q) (A.2)
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-(�q) = 〈A(−�q)LA(�q)〉
NS(�q) (A.3)

where A(�q) is the Fourier component of the fluctuations of the adatom density and L is the
Lagrangian describing the dynamics of the adatoms. The microscopic model of the dynamics
is described in section 2. N is the number of adsorbed atoms. Also,

A(�q) =
∑

�l
(p�l −�) exp(−i�q · �l) (A.4)

Lp�l =
NN�l∑

�a
[p�l+�aP�l+�a→�l − p�lP�l→�l+�a]. (A.5)

S(�q) represents the static structure factor. Within our model, we obtain

S(�q) = (1 −�) +

(
n0

�
−�

) NN∑
�a

exp(−i�q · �a) (A.6)

S(0) = (1 −�) + 4

(
n0

�
−�

)
(A.7)

-(�q) = W0P̄0
4 − 2 cos(qa cosβ)− 2 cos(qa sin β)

�(1 −�) + 2(n0 −�2)[ cos(qa cosβ) + cos(qa sin β)]
(A.8)

where β is the angle between the wave vector �q and the lattice vector �a. After some treatment,
we obtain the final form of the chemical diffusion coefficient:

DKch = W0a
2 P̄0

(1 −�) + 4(n0/�−�). (A.9)
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